Monatshefte für Chemie Chemical Monthly Printed in Austria

# Activity Measurements of Solid Ni–In Alloys by EMF Method with Zirconia Solid Electrolyte

Iwao Katayama<sup>1,\*</sup>, Yoshihiro Suzuki<sup>2</sup>, Yoshiaki Yamamoto<sup>2</sup>, and Toshio Oishi<sup>3</sup>

<sup>1</sup> Department of Materials Science and Processing, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

<sup>2</sup> Graduate Student of Kansai University, Japan

<sup>3</sup> Department of Materials Science and Engineering, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

Received September 12, 2004; accepted December 15, 2004 Published online November 14, 2005 © Springer-Verlag 2005

**Summary.** The EMF of galvanic cells with stabilized zirconia solid electrolyte was measured to determine the activity of indium in solid Ni–In alloys in the temperature range of 970–1170 K and composition range of 5–55 mol% In. Activity of indium increases sharply in the  $\zeta$  phase and Ni<sub>13</sub>In<sub>9</sub> phase. The activity values are compared with literature data.

Keywords. Nickel-indium alloy; Activity; EMF method; Thermodynamics; Solid electrolyte.

# Introduction

Thermodynamic properties of solid alloys and compounds in wide composition ranges have been studied by many scientists. Lattice defect structures in the phases and existing regions of the phases in the phase diagram are the interest to be clarified in basic study.

Ni–In alloys have been studied by several authors. *Vinokurova* and *Geiderikh* [1, 2] used fused salt (chloride) EMF method to obtain the thermodynamic properties in the temperature range  $360-670^{\circ}$ C and composition range 25-40 at.% In. *Bhattacharya* and *Masson* [3, 4] measured vapor pressures in the range 902-1058 K and 24.97-60.00 at.% In by atomic absorption technique. *Sommer* et al. [5, 6] used zirconia based solid electrolyte EMF method with Fe,Fe<sub>x</sub>O as reference electrode to determine the activity of In in the solid and liquid states up to 70 at.% In.

<sup>\*</sup> Corresponding author. E-mail: katayama@mat.eng.osaka-u.ac.jp

Some discrepancy can be found in the thermodynamic values obtained by several researchers by several experimental techniques. *Waldner* and *Ipser* [7, 8] used thermodynamic modeling to describe the thermodynamic properties and phase diagram of the complete Ni–In system.

The aim of this study is to measure the activity of In in solid Ni–In alloys by stabilized zirconia EMF method in the temperature range 970-1170 K. The reference electrode is the mixture of In and In<sub>2</sub>O<sub>3</sub>.

### **Results and Discussion**

EMF measurement of the following cell (I) was performed:

$$(-)$$
Kanthal, Re/In, In<sub>2</sub>O<sub>3</sub> |ZrO<sub>2</sub>(+Y<sub>2</sub>O<sub>3</sub>)| Ni-In, In<sub>2</sub>O<sub>3</sub>/Re, Kanthal(+) (I) (I)

The experimental results are shown in Table 1. The data shown by italic letters are obtained from another experimental run, which show the reproducibility of the data. All the data points distributed around a linear line for each composition within the same field, and the relation between EMF (E/mV) and temperature (T/K) are obtained by least-squares regression analysis. As the alloys in the same two phase fields show the same EMF values, the data were treated in the same group. Experimental data are shown in Fig. 1a and b. The number in the figure corresponds to the data points obtained in one experimental run. The temperature dependence of the EMF is shown in Table 2. The break points in the E:T plot correspond to the phase boundaries in the phase diagram of the Ni–In system.

The activity of indium  $a_{In}$  (reference state is liquid indium saturated with  $In_2O_3$ ) is obtained by Eq. (1), where F is the Faraday constant, R is the gas constant, and  $\Delta \overline{G}_{In}/J \mod^{-1}$  is the partial molar *Gibbs* energy of mixing of In.

$$-3EF = RT \ln a_{\rm In} = \Delta \overline{G}_{\rm In} \tag{1}$$

Uncertainty limits in the activity values can be easily derived from those in the EMF values. The activities of indium in the alloys at 1000, 1050 and 1100 K are shown in Table 3 and Fig. 2. In the figure phase boundaries at 1000 K are shown. It is found that activity increases sharply in the  $\zeta$  phase and Ni<sub>13</sub>In<sub>9</sub> phase. Figure 3 shows the activity values at 1000 K by several researchers. *Bienzle* and *Sommer* [5] measured activity at 1080–1280 K ( $x_{In} = 0.02$ , 0.03, 0.04, 0.05 and 0.07). In the figure extrapolated values by them are shown in the  $\alpha$ -Ni solid solution range. Our data (at x = 0.05 and 0.15) in the two phase region ( $\alpha$ -Ni + Ni<sub>3</sub>In) are in good agreement with extrapolated values by *Vinokurova* and *Geiderikh* ( $x_{In} = 0.151-0.20$ ). In the  $\zeta$ phase the results in this work agree well with the values by *Bhattacharya* and *Masson* [3]. In higher concentration range of In large discrepancy can be found in the experimental data. Much more experimental data seem necessary to clarify the thermodynamic properties of this system. Some of the points to be considered may be picked up: in EMF method, production of In<sub>2</sub>O gas at

| T/K            | E/mV    | T/K     | $E/\mathrm{mV}$           | T/K             | $E/\mathrm{mV}$   | T/K     | $E/\mathrm{mV}$ |
|----------------|---------|---------|---------------------------|-----------------|-------------------|---------|-----------------|
| Ni-5.0 at.% In |         | 1108    | 96.40                     | 1025            | 75.50             | Ni-48.0 | at.% In         |
| 1004           | 108.74  | 1085    | 96.00                     | 1104            | 70.00             | 1144    | 41.79           |
| 1053           | 103.03  | 1105    | 95.80                     | N: 27 0         |                   | 1051    | 54.80           |
| 1029           | 105.72  | 1168    | 90.01                     | Ni-37.0         | at.% In           | 1074    | 51.19           |
| 1076           | 103.51  |         | ~ ~                       | 1043            | 69.50             | 1104    | 46.09           |
| 1124           | 103.92  | Ni-32.5 | at.% In                   | 1085            | 66.80             | 1004    | 62.21           |
| 1100           | 103.66  | 1015    | 93.10                     | 1042            | 69.80             | 1032    | 57.67           |
| 1148           | 104.07  | 1102    | 87.60                     | 1076            | 67.70             | 1092    | 48.34           |
| 1172           | 104 20  | 1025    | 90.70                     | 1021            | 71.50             | 1091    | 48 29           |
| 952            | 114 20  | 1064    | 89.00                     | 1069            | 68.20             | 1152    | 41 38           |
| 060            | 117.20  | 1112    | 86.50                     | 1074            | 67.50             | 1102    | 45.02           |
| 080            | 112.40  | 955     | 96.20                     | 1033            | 70.60             | 1105    | 41.02           |
| 900            | 110.90  | 984     | 94.10                     | 1054            | 69.30             | 1151    | 41.92           |
| 990            | 109.30  | N: 225  | -+ 07 I                   | 1041            | 70.60             | 1102    | 40.65           |
| 1010           | 107.40  | 1106    | al.% In                   | N: 27 5         | -+ 07 I           | Ni-50.0 | at.% In         |
| 1027           | 100.00  | 1062    | 82.00                     | 1005            | al.% In           | 1161    | 36.66           |
| 1038           | 104.80  | 1063    | 85.20                     | 1095            | 63.70             | N: 53 0 |                 |
| 1051           | 103.30  | 1084    | 83.80                     | 1023            | 69.40             | Ni-52.0 | at.% In         |
| Ni-15.0        | at.% In | 993     | 89.60                     | 1106            | 62.70             | 1092    | 35.30           |
| 1010           | 108.10  | 1046    | 86.00                     | 1056            | 66.50             | 1051    | 32.53           |
| 1047           | 103 70  | 1023    | 88.60                     | 1005            | 71.20             | 1083    | 34.03           |
| 1035           | 105.70  | 1074    | 84.90                     | 1055            | 67.50             | 993     | 35.31           |
| 1055           | 100.00  | 1037    | 86.30                     | 1017            | 69.50             | 1145    | 39.02           |
| 1070           | 100.90  | 1094    | 83.20                     | 951             | 78.40             | 1111    | 36.90           |
| 1000           | 102.10  | 1046    | 86.10                     | 991             | 72.80             | 1133    | 39.94           |
| 1000           | 97.70   | N: 216  | at 07 In                  | N: 20 0         | at 07. In         | 1004    | 34.27           |
| 1069           | 99.30   | 1022    | <i>ui. 70 In</i><br>70 60 | 1100            | ui. % In<br>56 A7 | 1055    | 31.96           |
| Ni-20.0        | at.% In | 1085    | /9.00                     | 1100            | 54.80             | 1134    | 39.11           |
| 1111           | 95.91   | 1026    | 82.90                     | 1124            | 54.80             | 1093    | 34.54           |
| 1121           | 95.06   | 983     | 85.00                     | 11/1            | 51.75             | 1162    | 36.00           |
| 1144           | 92.64   | 1026    | 82.00                     | 1146            | 53.32             | 1179    | 34.09           |
| 1130           | 94.01   | 1095    | //.80                     | 10/5            | 58.62             | 1124    | 38.54           |
| 1139           | 93.16   | Ni-35.5 | at.% In                   | 1004            | 62.10             |         |                 |
| 1121           | 94.86   | 1010    | 81.00                     | 1051            | 59.72             | Ni-55.0 | at.% In         |
| 1171           | 90.09   | 1103    | 74.20                     | 981             | 63.56             | 1075    | 34.10           |
|                | 20102   | 1053    | 77.60                     | 1026            | 60.44             | 1122    | 31.74           |
| Ni-27.0        | at.% In | 1082    | 75.80                     | Ni-42.0 at % In |                   | 995     | 35.73           |
| 1117           | 95.28   | 1015    | 80.80                     | 1134            | 42.86             | 1013    | 34.10           |
| 1150           | 92.31   | 1065    | 77.60                     | 1160            | 40.81             | 1085    | 34.65           |
| 1126           | 94.33   | 1005    | 77.00<br>80.40            | 1109            | 40.81             | 1152    | 28.49           |
| 1178           | 89.86   | 1023    | 80.40<br>76.00            | 1123            | 42.93             | 1113    | 31.81           |
| 1023           | 95.70   | 1092    | 70.00                     | 1134            | 41.04             | 1165    | 26.90           |
| 1065           | 96.30   | 981     | 82.80                     | 1023            | 57.53             | 1083    | 34.58           |
| 1104           | 96.90   | 1042    | 78.90                     | 1054            | 52.87             | 1142    | 29.29           |
| 1034           | 96.40   | 1101    | 74.90                     | 1102            | 46.42             | 1065    | 32.92           |
| 1066           | 96.50   | Ni-36.5 | at.% In                   | Ni-45.0         | at.% In           | 1156    | 28.10           |
| 1083           | 96.50   | 994     | 78.10                     | 1085            | 49.27             | 965     | 38.12           |
| 1092           | 97.00   | 1096    | 71.20                     | 1124            | 42.84             | 1122    | 31.73           |
| 1044           | 96 30   | 1046    | 74 10                     | 1106            | 45.07             | 966     | 38 27           |
| 1106           | 96.90   | 1076    | 71.90                     | 1145            | 41.01             | 1055    | 32 38           |
| 1044           | 96.80   | 969     | 80.20                     | 1165            | 40.23             | 1173    | 26 30           |
| 1027           | 07 50   | 707     | 00.20                     | 1027            | 57.80             | 11/5    | 20.37           |
| 1000           | 21.50   |         |                           | 1047            | 57.00             |         |                 |

Table 1. Experimental EMF data of cell: (–)In,In<sub>2</sub>O<sub>3</sub>  $|ZrO_2(+Y_2O_3)|$  Ni–In,In<sub>2</sub>O<sub>3</sub>(+)



**Fig. 1.** (a) Temperature dependence of EMF of cell  $In,In_2O_3 |ZrO_2(+Y_2O_3)| Ni-In,In_2O_3$  in Ni–In alloys with  $x_{In} = 0.05$  to 0.38: (1, 2) Ni-5.0 at.% In; (3) Ni-15.0 at.% In; (4) Ni-20.0 at.% In; (5, 6, 7) Ni-27.0 at.% In; (8) Ni-32.5 at.% In; (9) Ni-33.5 at.% In; (10) Ni-34.6 at.% In; (11) Ni-35.5 at.% In; (12) Ni-36.5 at.% In; (13) Ni-37.0 at.% In; (14, 15) Ni-37.5 at.% In; (16, 17) Ni-38 at.% In; (b) temperature dependence of EMF of cell  $In,In_2O_3 |ZrO_2(+Y_2O_3)| Ni-In,In_2O_3$  in Ni–In alloys with  $x_{In} = 0.42$  to 0.55: (1) Ni-42.0 at.% In; (2) Ni-45 at.% In; (3, 4) Ni-48 at.% In; (5) Ni-50.0 at.% In; (6) Ni-52 at.% In; (7, 8) Ni-52 at.% In

| Alloys (at.%)      | $E/\mathrm{mV}$                  | Temperature range |
|--------------------|----------------------------------|-------------------|
| Ni-(5% In-15% In)  | $E = -0.1081T + 217.07 \pm 0.23$ | 952–1103 K        |
| Ni-5% In           | $E = 0.0076T + 95.35 \pm 0.06$   | 1076–1172 K       |
| Ni-(20% In-27% In) | $E = -0.0950T + 201.35 \pm 0.42$ | 1111–1178 K       |
| Ni-27% In          | $E = 0.0049T + 91.23 \pm 0.98$   | 1023–1108 K       |
| Ni-32.5% In        | $E = -0.0601T + 153.30 \pm 1.00$ | 955–1112 K        |
| Ni-33.5% In        | $E = -0.0635T + 152.72 \pm 0.84$ | 993-1106 K        |
| Ni-34.6% In        | $E = -0.0602T + 144.25 \pm 0.55$ | 983–1095 K        |
| Ni-35.5% In        | $E = -0.0684T + 150.15 \pm 0.54$ | 981–1103 K        |
| Ni-36.5% In        | $E = -0.0728T + 150.48 \pm 0.51$ | 969-1104 K        |
| Ni-37% In          | $E = -0.0720T + 145.04 \pm 0.51$ | 1021–1085 K       |
| Ni-37.5% In        | E = -0.1400T + 211.54            | 951–991 K         |
| Ni-37.5% In        | $E = -0.0803T + 151.64 \pm 0.61$ | 1005–1106 K       |
| Ni-38% In          | $E = -0.0522T + 114.47 \pm 0.51$ | 981–1075 K        |
| Ni-38% In          | $E = -0.0671T + 130.29 \pm 0.04$ | 1100–1171 K       |
| Ni-(42% In-48% In) | $E = -0.155T + 217.49 \pm 1.09$  | 1004–1105 K       |
| Ni-(42% In-48% In) | $E = -0.0652T + 116.32 \pm 0.81$ | 1106-1169 K       |
| Ni-(52% In-55% In) | $E = -0.0914T + 126.42 \pm 0.35$ | 965-1013 K        |
| Ni-(52% In-55% In) | $E = 0.0689T - 40.32 \pm 0.49$   | 1051-1093 K       |
| Ni-52% In          | $E = 0.1147T - 90.51 \pm 0.50$   | 1111–1134 K       |
| Ni-52% In          | $E = -0.1450T + 204.86 \pm 0.37$ | 1145–1179 K       |
| Ni-55% In          | $E = -0.0997T + 143.24 \pm 0.50$ | 1113–1173 K       |

Table 2. Temperature dependence of EMF of cell:  $(-)In,In_2O_3 |ZrO_2(+Y_2O_3)| Ni-In,In_2O_3(+)$ 

Table 3. Activity of indium in Ni-In Solid Alloys

| 1000 K                 |                 | 1050 K          |                   | 1100 K          |                   | 1150 K          |                   |
|------------------------|-----------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|
| <i>x</i> <sub>In</sub> | a <sub>In</sub> | x <sub>In</sub> | $a_{\mathrm{In}}$ | x <sub>In</sub> | $a_{\mathrm{In}}$ | x <sub>In</sub> | $a_{\mathrm{In}}$ |
| 0.05                   | 0.0225          | 0.05            | 0.0323            | 0.05            | 0.0375            | 0.05            | 0.0428            |
| 0.15                   | 0.0225          | 0.15            | 0.0323            | 0.27            | 0.0470            | 0.2             | 0.0615            |
| 0.27                   | 0.0352          | 0.27            | 0.0410            | 0.325           | 0.0633            | 0.27            | 0.0615            |
| 0.325                  | 0.0390          | 0.325           | 0.0503            | 0.335           | 0.0726            | 0.38            | 0.2002            |
| 0.335                  | 0.0448          | 0.335           | 0.0577            | 0.346           | 0.0846            | 0.42            | 0.5799            |
| 0.346                  | 0.0536          | 0.346           | 0.0681            | 0.355           | 0.0934            | 0.45            | 0.5799            |
| 0.355                  | 0.0581          | 0.355           | 0.0745            | 0.365           | 0.1077            | 0.48            | 0.5799            |
| 0.365                  | 0.0669          | 0.365           | 0.0859            | 0.37            | 0.1245            | 0.52            | 0.6060            |
| 0.37                   | 0.0786          | 0.37            | 0.1000            | 0.375           | 0.1348            | 0.55            | 0.6868            |
| 0.375                  | 0.0834          | 0.375           | 0.1073            | 0.38            | 0.1674            |                 |                   |
| 0.38                   | 0.1144          | 0.38            | 0.1383            | 0.42            | 0.5266            |                 |                   |
| 0.42                   | 0.3906          | 0.42            | 0.4568            | 0.45            | 0.5266            |                 |                   |
| 0.45                   | 0.3906          | 0.45            | 0.4568            | 0.48            | 0.5266            |                 |                   |
| 0.48                   | 0.3906          | 0.48            | 0.4568            | 0.52            | 0.6126            |                 |                   |
| 0.52                   | 0.5890          | 0.52            | 0.6306            | 0.55            | 0.6304            |                 |                   |
| 0.55                   | 0.5890          | 0.55            | 0.6306            |                 |                   |                 |                   |



Fig. 2. Activity of In in the Ni–In alloys at 1000, 1050, 1100, and 1150 K (phase boundary at 1000 K)



Fig. 3. Activity values obtained by several researchers at 1000 K (including values extrapolated from the original data)

higher temperatures from  $In + In_2O_3$ , the stability of indium chloride (+1 or +3) in the fused salt, *etc.*, but at present the reason of the difference in the data is not clear.

### Conclusions

Thermodynamic activity is measured in solid Ni–In alloys by stabilized zirconia EMF method with In,In<sub>2</sub>O<sub>3</sub> as reference electrode in the temperature range

970–1170 K. Activity of In increases sharply in the  $\zeta$  and Ni<sub>13</sub>In<sub>9</sub> phase regions with increasing In concentration. The activity values are compared with the literature data at 1000 K.

#### **Materials and Experimental Procedure**

Alloys are made from pure Ni (99.98 mass% purity) and In (99.99 mass%) held and melt at 1323 to 1373 K, followed by aging at 1073 K for 7 days in an evacuated silica ampoule. The alloy powder and  $In_2O_3$  powder (99.999 mass%) were mixed and pressed into a pellet to be heat-treated at 1023 to 1073 K for 3 to 5 days for equilibration before cell construction.

Cell apparatus and experimental procedure were quite similar to those used for the systems Cu–In [9], Pd–Ga [10], and Co–Ga–Sb [11] and described there in detail. A spring was inserted in the middle part of the alumina tube above the alloy electrode to keep good contact between the alloy electrode and the solid electrolyte. The reaction tube was kept at higher pressure than 1 atm of purified argon gas, and EMF measurement was performed in the temperature range 970–1170 K.

# References

- [1] Vinokurova GA, Geiderikh VA (1970) Zh Fiz Khim 44: 2094
- [2] Vinokurova GA, Geiderikh VA (1973) Dokl Akad Nauk SSSR Fiz Khim 211: 620
- [3] Bhattacharya B, Masson DB (1976) Mater Sci Engg 22: 133
- [4] Bhattacharya B, Masson DB (1977) Mater Sci Engg 28: 1285
- [5] Bienzle M, Sommer F (1991) Z Metallkd 82: 609
- [6] Schmid J, Bienzle M, Sommer F, Predel B (1995) Z Metallkd 86: 877
- [7] Waldner P, Ipser H (2002) Intermetallic 10: 485
- [8] Waldner P, Ipser H (2002) Z Metallkd 93: 825
- [9] Katayama I, Miyakusu K, Iida T (2002) J Min Metall 38b: 23
- [10] Katayama I, Hattori Y, Iida T (2002) Proc Internat Conf on Designing of Interfacial Structures in Advanced Materials and their Joints. Osaka Japan 26–28 Nov. 2002, pp 484–489
- [11] Katayama I, Matsui T, Oishi T (2003) Intermetallis 11: 1161